Forests are retaining carbon for less and less time

19 de November 2019

Published in the journal PNAS (Proceedings of the National Academy of Sciences), a study to which the Spanish National Research Council (CSIC) and CREAF have contributed has revealed that the time for which forests retain carbon has fallen by between 0.2% and 0.3% every year in recent decades. Plant mortality is rising due to higher carbon dioxide (CO2) levels and, in particular, warming and droughts. The time in question, which is termed carbon turnover time, is a relevant factor in climate change projections as it is indicative of carbon sinks’ capacity to retain carbon.

Mediterranean forest (CSIC/M.F. Via). In general, tree mortality has risen in all the climate zones studied.

Mediterranean forest (CSIC/M.F. Via). In general, tree mortality has risen in all the climate zones studied.

Forests play a crucial role in carbon retention, but for how long can they retain it? While climate change scenario predictions take forests’ CO2 sequestration capacity into account, the amount of time for which vegetation can retain the gas (and, thus, carbon) before it is released back into the environment (due to plant death and decomposition) is currently unknown.

An international study led by Kailiang Yu from the University of Utah (USA) and published in PNAS has attempted to shed some light on the matter. It involved scientists, including CSIC and CREAF researchers Josep Peñuelas and Jordi Sardans, analysing data spanning 1955 and 2018 from 695 forests in tropical, temperate and cold climate zones, and comparing it to Earth system model simulations.

There is an inverse relationship between atmospheric CO2 and carbon turnover time.

The study’s results show there to be an inverse relationship between atmospheric CO2 and carbon turnover time, with the latter dropping as levels of the former rise. Specifically, carbon turnover time has fallen by between 0.2% and 0.3% a year over the last three decades.

“Factors such as warming and drought are reducing the time for which plants retain carbon”, explains Josep Peñuelas. “The temperature causes an increase in the metabolism of organisms, as well as increased precipitation in some areas, but drought results in greater mortality and, consequently, a decline in turnover time”, he continues. “In general, tree mortality has risen in all the climate zones we studied”, he remarks.

The annual drop of between 0.2% and 0.3% in forests’ carbon turnover time is significant because, as Peñuelas points out, “it entails an overall fall of as much as 9% in 30 years”. The study’s results suggest that forest carbon sinks are likely to be constrained by a decrease in the time for which vegetation can retain carbon.


Referenced article

Kailiang Yu, et al. Pervasive decreases in living vegetation carbon turnover time across forest climate zones, PNAS. www.pnas.org/cgi/doi/10.1073/pnas.1821387116

, , , , ,

El CREAF és un centre de recerca que genera coneixements i solucions innovadores en ecologia terrestre per ajudar a la societat a mitigar els efectes del Canvi Global, a crear plans d'adaptació i a augmentar la capacitat de resiliència dels ecosistemes naturals.
Related articles
Climate change and population growth: key factors in the decline of Easter Island’s civilization
30 de July 2020Verónica Couto Antelo
Climate change, deforestation and fires are changing the Amazon Rainforest’s scent
23 de July 2020Anna Ramon Revilla
New proposals to understand how the planet’s vegetation works
20 de July 2020CREAF
Discover the biodiversity of the coast with the ‘Return to the Sea’ campaign
16 de July 2020Ángela Justamante
Adriana Clivillé, from the CREAF Communication team, joins the Alter-net Management Board
15 de July 2020CREAF

Follow CREAF on: