A study involving three CREAF researchers has found that plants with low nitrogen and phosphorus concentrations in their leaves do not reproduce every year to enable them to reproduce on a huge scale in years in which conditions are right. Oaks, holm oaks and beeches are examples of trees that behave in such a way.
According to a study published yesterday in the Nature Climate Change journal, the capacity of terrestrial ecosystems to absorb carbon dioxide (CO2) increased between 1994 and 2014. The study highlights the need to protect tropical forests, as their carbon sequestration rate has risen more than that of any other type of forest over the last few years.
A study led by CREAF shows that decreases in pollutant deposition and the increase in atmospheric CO2 have stimulated photosynthesis and carbon sequestration in forests. Therefore, it is crucial to understand how carbon circulates in the atmosphere, in living organisms, oceans, and soils in order to anticipate the effects of climate change.
A new study led by Josep Peñuelas and published in Nature Ecology and Evolution reveals that CO2 abundance in the atmosphere no longer has a powerful fertilizing effect on vegetation. The greening that has been observed in recent years is slowing and this will cause CO2 levels in the atmosphere to rise, thus increasing temperatures and leading to increasingly severe changes in climate.
The North Atlantic Oscillation (NAO), an important atmospheric phenomenon affecting the meteorology of the whole of Europe, impacts the quantity and timing of seed production in the continent's forests. When the NAO favors a dry and warm spring, most of the studied forests produced more seeds and this is also done in a more synchronized manner.
Subscribe to our Newsletter to get the lastest CREAF news.
25 de November 2020
1 de July 2015
30 de January 2015